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Abstract

The variation of stiffness with temperature in polymers is widely discussed in the literature. Previous studies have been concerned with the

effects of temperature for highly speci®c materials and for limited ranges of temperature. Representations or predictions of stiffness

variations for wide classes of polymers (thermosets, thermoplastics, amorphous, semi-crystalline, ®lled, un®lled, linear, crosslinked, etc.)

and over wide ranges of temperature (from fully glassy to fully rubbery) have not been established. However, modern engineering design

tools, especially those based on virtual design environments, require robust property models that apply over the entire range of temperatures

that extend far below and substantially above the Tg of the matrix. The present paper addresses that need. The in¯uence of temperature on

secondary bonding in polymers is the basis of the approach. Weibull statistics are used to represent the failure of secondary bonds during the

relaxation processes that lead to stiffness change over the full range of use temperatures. The feasibility of the approach was illustrated by

applying the model to experimental data chosen at random from the literature. The behavior of six polymers of very different nature was

successfully described. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The mechanical properties of polymers are greatly

in¯uenced by temperature. Typically, the elastic modulus

of a polymer can drop from 109 to 106 Pa between the

glassy and rubbery state. However, polymers and their

composites are more and more extensively used over

wide ranges of service conditions. Therefore it becomes

necessary to have an accurate description of the varia-

tions of the material properties under various and

extreme conditions. For the present case, we will focus

on temperature. To enable the use of polymer matrix

composites within a transition region, we need to be

able to analytically describe the changes of the polymer

properties with temperature. In this paper, we will

restrict our discussion to changes in the stiffness of the

material.

The purpose of this study is to establish an explicit engi-

neering relationship between stiffness and temperature of a

polymer that can be easily integrated into micromechanics

models and design codes. This relationship can be applied to

any polymer (thermosets, thermoplastics, amorphous,

linear, semi-crystalline, crosslinked, low molecular weight,

high molecular weight materials¼) for the entire range of

temperatures: from the glassy state to the ¯ow region. This

model will enable us to quantitatively describe stiffness

changes across the transition regions (without making or

testing the material).

In the literature, a very small number of studies deal with

explicitly relating the changes in the modulus of a polymer

caused by variations of temperature. In the rubbery region,

however, the temperature dependence is fairly well estab-

lished [1]. In this region, the modulus can be computed

using Eq. (1):

E � rRT

Mc

�1�

where Mc is the molecular weight between crosslinks.

However, this dependence can only be rigorously applied

above the glass transition temperature of the material.

In the glassy state, different theories enable us to compute

the modulus variations when they are small. For example,

Van Krevelen [2] suggests the following set of relation-

ships:

Gg�T�
Gg�Tr� �

Tg=Tr 1 2

Tg=Tr 1 2T =Tr

for T , Tg �2�
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Gc�T�
Gc�Tr� � exp

"
2 2:65

Tm=Tr 2 Tm=T

Tm=Tr 2 1

#

for T . Tr 2 100

�3�

Gsc � Gg 1 x2
c�Gc 2 Gg� �4�

where G is the shear modulus, and the subscripts g, c, sc, m,

and r refer to glassy, crystalline, semi-crystalline, melting

and reference. However, these equations only rigorously

apply to the glassy state, and do not relate to the micro-

structure of the polymer.

Computational theories also enable an accurate descrip-

tion of the variation of the crystalline phase of the polymer

modulus with temperature. These theories are complex and

are usually restricted to one polymer and a fairly limited

temperature range [3].

One can note that most of the literature focuses on the

effect of time upon the stiffness of the polymer (KWW [4],

Rouse [5], the traditional viscoelastic models [6] (springs

and dashpots) and the time±temperature equivalence (WLF

[7])). However, none of these equations explicitly relate

modulus and temperature. Other shortcomings of these

models are as follows:

² The KWW equation does not consider the details of the

polymer microstructure and requires the use of relaxation

times. The concept of relaxation time is not fully

established and is still being discussed [8].

² The Rouse model does not apply over large temperature

ranges [6].

² Viscoelastic models are phenomenological and were

derived based on the assumption that the polymer is in

the viscoelastic region (i.e. T . Tg). These models were

mathematically extended to the case of elastic behavior

without reconsideration of the fundamental physical

behavior. Impact and fast strain rate experiments illus-

trate the need for exact and accurate models to describe

the instantaneous response of the material. Local fracture

events also occur at high strain rates.

² The WLF equation is semi-empirical and is only a time±

temperature equivalence tool. A relationship between

modulus and temperature can not be obtained through

the WLF equation (unless an accurate modulus versus

time prediction scheme is established). As transition

temperatures are easier to measure and interpret than

relaxation times, we will therefore concentrate on expres-

sing the stiffness of the material as an explicit function of

temperature. Further work could focus on the rate or

time-dependency of the modulus using time±temperature

superposition schemes. However, this extension will not

be included in the present paper.

We would like to adopt a more general approach than the

existing theories listed above, be able to describe the

polymer behavior over the entire temperature spectrum,

including the transitions, and relate the mechanical response

of the polymer to its microstructure.

2. Background

The well-known modulus versus temperature curve for a

typical polymer exhibiting a secondary relaxation is illus-

trated by Fig. 1. We will not detail the molecular motions

that have been carefully reviewed in other studies. We will

rather focus on the behavior of the inter- and intra-molecular

bonds, as discussed by Ashby [9].

The bonds in polymers can be divided into two major

groups: primary bonds and secondary bonds. The ®rst

class includes the strong covalent intramolecular bonds.

The disassociation energy [16,17] of such bonds varies

between 50 and 200 kcal/mol. Secondary bonds include

weaker bonds, e.g. hydrogen bonds (dissociation energy

[16,17]: 3±7 kcal/mol), dipole interactions (1.5±3 kcal/

mol), Van der Waals interactions (0.5±2 kcal/mol, and

ionic 10±20 kcal/mol. The two types of bonds are shown

schematically in Fig. 2.

From the glassy state to the ¯ow region, the primary

bonds of the molecule remain intact. However, the second-

ary bonds (hydrogen, dipole, Van der Waals) will be altered

by the molecular motions during relaxation. We will call
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Fig. 1. Modulus versus temperature for a typical polymer.

Fig. 2. Schematic of bonds in polymer materials.



ªbond failureº the dissociation of a secondary bond

(referred to as ªbond meltingº by Ashby [9]).

Region 1 in Fig. 1, commonly referred as the glassy

region, is characterized by a quasi-elastic behavior of the

polymer. The modulus is constant over a wide range of

temperatures and most of the secondary bonds stretch with-

out breaking. However, for some polymers, the thermal

energy is high enough to allow rotation of side groups.

For this situation, one (or several) secondary relaxations

can be observed, characterized by a signi®cant drop in the

modulus. In this case, the secondary bonds need to break to

allow the side groups to rearrange. However, the activation

energy required for this very local movement is low, and

these relaxations can occur at low temperatures (lower than

the glass transition temperature).

The alpha transition, also referred as the glass transition,

usually results in a dramatic drop in Young's modulus

(region 2) followed by a plateau (rubbery region). In region

2, the molecules start sliding against each other [9].

However, the movement of the molecules is still restricted

by the presence of entanglement, crosslinks, crystallites,

®llers, etc. The movements of a molecule can be thought

as trapped in a tube (concept of reptation introduced by De

Gennes [10]), where the molecule can move in a snake-like

fashion. In order to be able to reptate, the molecule needs to

break secondary bonds as in the case of the secondary

relaxation, but over a larger part of each molecule.

However, in this region, some elastic parts still survive

and the molecular chain will keep some memory of its

original position. As temperature is further increased, all

of the secondary bonds are broken and the molecules can

move freely (unless crosslinks are present); the modulus of

the polymer starts dropping again (viscous ¯ow, region 3).

3. Analysis

Spring and dashpot models lead us to discuss relaxation

times as a representation of local behavior. The relationship

between modulus and time is often written as:

E�t� �
XN
i�1

Ei exp�2t=ti� �5�

Where ti are the relaxation times. One can de®ne the

distribution function H as:

H�t� � tE�t� �6�
Eq. (5) can then be written as:

E�t� �
Z1 1

2 1
H�t� exp�2t=t� d�ln t� �7�

In the viscoelastic region, reptation is sometimes [9]

modeled by an equation of the type:

E / exp 2
Q

RT

� �
�8�

Where Q is the activation energy of the process. However,

when one bond breaks, there is a non-negligible in¯uence on

the other bonds. Secondary transitions, for example, are

typically the result of highly localized molecular motions

[18]. In order to allow side group motion or the motion of a

few main chains, secondary bonds need to be broken. Due to

the distance variations between atoms inducing a distribu-

tion in the strength of the interactions, the secondary bonds

will break at different times. The failure of the ®rst bond will

change the interaction between the remaining atoms due to

the spatial proximity of the event. If we consider the process

of bond rupture, a Weibull distribution [11] would seem to

be a more appropriate general form than the Boltzman

distribution of Eq. (8). Let us ®rst consider the beta transi-

tion. The mechanical response is driven by the motion of

small chain segments (only a few monomers long). Consid-

ering the number and strength of the bonds involved in this

relaxation process we can associate a Weibull coef®cient m1

with the beta relaxation. In this case Eq. (5), for the beta

transition becomes:

H1�t� � exp 2
t

t1

� �m1
� �

�9�

or exchanging time for temperature [6] for instantaneous

response and introducing a conversion constant:

H1�T� � H1
0 exp 2

T

b1

� �m1
� �

�10�

Where b 1 is the characteristic temperature (i.e. beta transi-

tion temperature) and H1
0 a reference value for the beta

transition (i.e. magnitude of the relaxation). For the follow-

ing transitions (alpha, ¯ow), the number of segments

involved in the relaxation increases. For each relaxation,

new Weibull coef®cients related to the number of bond fail-

ures required for a given relaxation to occur and to the

strength of the intermolecular bonds can be associated

with the relaxation.

Finally, as we have different mechanisms occurring, we

can sum the different components:

E �
XN
i�1

Hi exp 2
Ti

Trefi

 !mi
 !

�11�

In our case, we will consider one to three transitions

(�1 # N # 3N�: The Hi coef®cients (magnitude of the tran-

sition step) can be obtained by different means. We can

subtract the value of the material's stiffness before and

after the transition, leading to Eq. (12) (case of a material

that does not undergo any transition prior to ¯owing),

Eq. (13) (material with two transitions, e.g. glass and

¯ow) and Eq. (14) (material undergoing three transitions,

e.g. beta, glass and ¯ow):

E � E3 exp 2
T

T3

� �m3
� �

�12�
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E � �E2 2 E3� exp 2
T

T2

� �m2
� �

1 E3 exp 2
T

T3

� �m3
� �

�13�

E � �E1 2 E2�exp 2
T

T1

� �m1
� �

1�E2 2E3� exp 2
T

T2

� �m2
� �

1 E3 exp 2
T

T3

� �m3
� �

(14)

The Ti correspond to the temperatures at each transition (as

given by the maximum of the peaks on the tangent delta

versus temperature of a DMA curve, or by the in¯ection

point of a DSC plot) in degrees Kelvin. The remaining

dif®culty is for the ¯ow region. In this ®rst approach, we

will not try to detail the behavior of the material in the ¯ow

region. We will only show the applicability of this approach

to the ¯ow region by using ¯ow temperatures given in the

literature.

The Ei represent the intantaneous stiffness of the material

at the beginning of each plateau or region. E1 is the instan-

taneous modulus at a very low temperature (far below Tg);

E2 is the instantaneous modulus right after the beta transi-

tion and E3 is the instantaneous stiffness at the beginning of

the rubbery plateau. A reliable experiment leading to consis-

tent values for those stiffness measurements is the ultra-

sound method. The obtained modulus corresponds to a

tensile experiment performed at very high strain rate or

cyclic frequency. Various modeling methods can also be

used to estimate the plateau stiffness values. The drops in

modulus in the different regions �Hi� represent the ªimpor-

tanceº of the relaxation processes. These values depend on

the chemistry of the polymer (stiffness of the backbone),

molecular weight, crystallinity and degree of crosslinking.

An increased crystallinity will produce only a slight increase

in the glassy state stiffness but can produce a large rise in the

value of the modulus of the rubbery plateau. Therefore,

the magnitude of the glass transition step will decrease as

the crystallinity is increased. The transition temperatures

will also increase as the crystallinity impedes the rearrange-

ment of the molecules under the applied stress. Increased

molecular weight and crosslinking will stiffen the material

to a lesser extent.

The last parameters �mi� are Weibull moduli, correspond-

ing to the statistics of the bond breakage. To allow rotations

of side groups for the secondary relaxations, the strength of

the bonds that must be broken depends on the relative posi-

tion of the side group to the other molecular chains. There-

fore, there will be a wide distribution of bond strengths and

we would expect m to be small. Reptation involves transla-

tion of the main chains. If the material is very homogenous

(narrow distribution of bond strengths) as in the case of

amorphous materials, we would expect m to be very large.

However, this parameter is going to depend on the degree of

impediment of the molecular motion (crosslinking, molecu-

lar weight and crystallinity¼). If the movement of the

molecular chains is severely restricted at precise locations

(by crosslinking, etc), we would expect m to be really low

(approaching a Boltzman distribution). For crosslinked

materials the slope of the drop in the viscous ¯ow region

will decrease with increasing degree of crosslinking. For

heavily crosslinked materials, the ¯ow region can even

disappear.

4. Validation

To validate the feasibility of our approach, we used data

for some polymers selected at random from the literature.

For details on how the experimental results were obtained,

we will refer to the published work of the different investi-

gators.

Eq. (14) was ®rst used with PMMA. The experimental

data from Ashby [9] were taken on the amorphous linear

polymer.

The second set of experimental data used represented the

variations of the storage shear modulus of PVDC from

Schmieder and Wolf [12].

The storage modulus (measured at 1 Hz) of a high

molar mass Thiophene-based poly(arylene ether ketone)

from Brennan et al. [13]: poly(1,4-BFB, BisA), Mn �
20; 000 g mol21 was also compared to our model.

The model was compared to the experimental data for the

storage modulus of a polyethylene oxide±salt complex

(PEO)0.82(Fe(SCN)3)0.18 measured at 3 Hz �Mw � 600; 000�
from Bartellota et al. [14].

Two poly(ether ether ketone)±polymethylsiloxane block

copolymers were also studied using data from Risch et al.

[15]. PEEK±PSX copolymers were obtained from the

PEEK block with a number average molecular weight of

4900 (5k) and from PSX block number-average molecular

weights of 3200 (3k) and 4900 (5k). In this case, we used

Eq. (13) to model the presence of two glass transitions.

The results are shown in Figs. 3±8. Surprisingly the m1,

m2, and m3 coef®cients were consistently equal to 5, 20, 20

for all materials except for the Thiophene-based poly(ary-

lene ether ketone), where m2 � 40 and m3 � 1:

5. Discussion and conclusions

In order to use Eqs. (12)±(14) in a systematic manner, we

need to be able to compute all the parameters or to obtain

them from independent experiments. The biggest challenge

is to understand the signi®cance of the m1, m2, and m3 para-

meters. The Weibull coef®cients were calculated to obtain

the best ®t of the overall shapes of the experimental master

curves. In the glassy region the effect of temperature on the

modulus of the different polymers is small and the plateaus

are fairly ¯at (Figs. 3±6). In the glass transition region,

however, the modulus drops rapidly. The Weibull moduli

associated with these transitions are high �m2 � 20� for

PMMA and (PEO)0.82(Fe(SCN)3)0.18. High coef®cients char-

acterize a very deterministic and simultaneous failure
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Fig. 4. PVDC.

Fig. 3. PMMA.



process. For the Thiophene-based poly(arylene ether

ketone) the curve is even steeper and a higher coef®cient

�m2 � 40� was required to describe the experimental data.

This behavior probably denotes a very narrow distribution

of secondary bond strengths. The glass transition of PVDC

is not as dramatic and a coef®cient of 20 leads to a curve

steeper than the experimental data, but remains acceptable.

The main difference between the different polymers is the
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Fig. 6. (PEO)0.82(Fe(SCN)3)0.18.

Fig. 5. Poly(1,4-BFB, Bis A).



length and height of the rubbery plateau. Eq. (13) can

describe these differences. The copolymers exhibit the

presence of two glass transitions (Figs. 7 and 8). The statis-

tical coef®cients associated with these two transitions were

also found to be 20. The differences in the molecular

weights of the polymer block constituents did not signi®-

cantly alter the shape of the transitions and only induced an

expected vertical shift of the rubbery plateau. A ¯ow region

is shown for PMMA and PVDC (Figs. 3 and 4). After a

threshold value, the modulus of the polymers decreases
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Fig. 8. PEEKt(5k)PSX(5k).

Fig. 7. PEEK(5k)PSX(3k).



dramatically. For thermoplastics, the secondary bond failure

process that results in ¯ow is similar to the one observed

during the glass transition, leading to a Weibull coef®cient

of 20. However, for crosslinked materials, the presence of

solid physical bonds, stops the material from ¯owing.

Therefore, the distribution of the strength of bonds to be

broken is in®nitely broadened, leading to a Weibull

coef®cient of 1. This behavior is illustrated by the
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Fig. 9. Weibull coef®cient associated with the glass transition versus degree of crystallinity for PPS and PEEK [20].

Fig. 10. Weibull coef®cient associated with the glass transition versus amount of carbon black for polybutadiene [21].



Thiophene-based poly(arylene ether ketone) (Fig. 5). Intui-

tively, it seems that the Weibull coef®cients associated with

the glass transition (m2) and the ¯ow region (m3) must be

related to the degree of impediment of the molecular motion

in the different regions, i.e. crystallinity, crosslinking, mole-

cular weight, etc.

These preliminary remarks have been veri®ed by subse-

quent studies [19±21]. The details of the experiments are
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Fig. 11. Theoretical variations of the stiffness versus temperature curve. m2 � 20; m3 � 20; m1 � 1;5, 20 and 40.

Fig. 12. Theoretical variations of the stiffness versus temperature curve. m1 � 5; m3 � 20; m2 � 1; 5, 20 and 40.



beyond the scope of this introductory paper. However,

examples of results supporting our physical interpretation

of the Weibull coef®cients are shown in Figs. 9 and 10.

Experiments performed on carefully de®ned materials

[19±21] have shown that Weibull moduli are strongly

related to the microstructure of the polymer. Fig. 9 shows

the variations of the Weibull coef®cient associated with the

glass transition with respect to the degree of crystallinity for

various grades of PEEK and PPS [19,20]. Fig. 10 illustrates

the relationship between m2 and the amount of carbon black

®ller in polybutadiene [21].

The sensitivity of the curves generated by Eq. (14) to the

Weibull parameters is illustrated by Figs. 11±13. The modu-

lus-temperature curves of Fig. 11 were obtained by varying

m1 and keeping m2 and m3 equal to 20. For m1 coef®cients

greater than 1, the differences between the curves is small.

Increasing m1 leads to a steeper step describing a more

abrupt secondary relaxation and indicating a simultaneous

process. Fig. 12 was obtained by keeping m1 equal to 5 and

m3 equal to 20 and varying m2. This last coef®cient drives

the slope of the glass transition. High values of the Weibull

parameter describe a steep transition. Low values (m2 � 5

for example) lead to single transition curves: the glass tran-

sition becomes very broad and the polymer starts ¯owing

before the end of the glass transition. The m2 coef®cient was

found to be almost constant for the cases previously studied,

and might be related to the breadth of the molecular weight

distribution or to the percent of crystallinity. However, it is

dif®cult to get details on the chemical properties of the

materials used in the experiments excerpted from the litera-

ture. The curves of Fig. 13 were calculated for m1 equal to 5

and m2 equal to 20. The value of m3 slightly in¯uences the

height of the rubbery plateau and drives the slope of the

curve in the ¯ow region. For high values of m3, the polymer

softens rapidly. As previously discussed, the ¯ow region

disappears (the plateau is in®nitely extended) for m3

equals 1, corresponding to the case of heavily crosslinked

polymers.

Despite some discrepancies, the model ®ts the data

successfully even for extreme temperatures. Eqs. (12)±

(14) seem to describe the stiffness behavior of polymers

with temperature. We must ®rst remember that these equa-

tions have a physical basis: in order for the relaxations to

occur, the secondary bonds need to break. In polymers, there

is a distribution of these molecular bond strengths. The

number of segments involved also varies from one relaxa-

tion to the other (always increases as the temperature

increases). Finally when one of the secondary bonds breaks,

other bonds are in¯uenced (in the manner that broken ®bers

interact with unbroken ®bers in a ®ber bundle). Secondly,

the reference temperatures and moduli can be independently

measured or calculated. The reference temperatures corre-

spond to the in¯ection point of the transitions and not the

temperature �Ti� corresponding to the plateau's height �Ei�:
Therefore, we are not forcing the value of the modulus at

any temperature. The reader might also notice the similarity

of the mathematical form of Eq. (14) with the KWW equa-

tion [4]. These two equations are stretched exponentials.
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Fig. 13. Theoretical variations of the stiffness versus temperature curve. m1 � 5; m2 � 20; m3 � 1; 5, 20 and 40.



However, the differences can be noted as follows:

² Eq. (14) is based on physical considerations (bond

failure).

² Eq. (14) refers to measurable, well-de®ned physical

quantities (transition temperatures and instantaneous

stiffnesses).

² Eq. (14) is applicable over the entire temperature range

(up to ¯ow of the polymer).

Further experiments are required to study the statistical

coef®cients for polymers with very different properties

(i.e. molecular weight, crystallinity, crosslinking and ®ller

content). Some of these experiments are presently being

conducted in our laboratory. However, this initial study

seems to demonstrate the validity of our approach. Applica-

tions of the model have been discussed in other publications

[19,22,23]: the model has been applied to a correct predic-

tion of composite strength and life across transitions

[19,23]. The determination of constants has been discussed

in terms of other modeling approaches and rests on their

validity in many cases [19±21]. This new model offers

great potential in ultimately reducing the experimental

work required to design new composites, and would enable

the use of life prediction tools, over large temperature

ranges including the matrix transitions.
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